Hadoop和Spark大数据框架

Hadoop和Spark大数据框架

Hadoop是什么

Hadoop分布式文件系统(HDFS),它将文件以Hadoop本机格式存储并在集群中并行化,包括:

  • YARN:协调应用程序运行时的调度程序

  • MapReduce:并行处理数据的算法

  • Sqoop:它将关系数据移入HDFS

  • Hive:一种类似SQL的接口,允许用户在HDFS上运行查询

  • Mahout:可以实现机器学习。

除了将HDFS用于文件存储之外,Hadoop现在还可以配置使用S3 buckets或Azure blob作为输入。

Hadoop使用Java编程语言构建,其上的应用程序也可以使用其他语言编写。通过一个Thrift客户端,用户可以编写MapReduce或者Python代码。

hadoop的安装部署可以点击本人博客CentOS下安装Hadoop

Spark是什么

Spark是一个较新的项目,最初于2012年诞生在加州大学伯克利分校的AMPLab。它也是一个顶级Apache项目,专注于在集群中并行处理数据,最大的区别在于它在内存中运行。

类似于Hadoop读取和写入文件到HDFS的概念,Spark使用RDD(弹性分布式数据集)处理RAM中的数据。Spark以独立模式运行,Hadoop集群可用作数据源,也可与Mesos一起运行。在后一种情况下,Mesos主站将取代Spark主站或YARN以进行调度。

Spark是围绕Spark Core构建的,Spark Core是驱动调度,优化和RDD抽象的引擎,并将Spark连接到正确的文件系统(HDFS,S3,RDBM或Elasticsearch)。Spark Core上还运行了几个库,包括Spark SQL,允许用户在分布式数据集上运行类似SQL的命令,用于机器学习的MLLib,用于解决图形问题的GraphX以及允许输入连续流式日志数据的Streaming。

Spark有几个API。原始界面是用Scala编写的,并且由于大量数据科学家的使用,还添加了Python和R接口。Java是编写Spark作业的另一种选择。

spark的安装部署可以点击本人博客CentOS下安装Spark

架构比较

Hadoop

hadoop_arch

首先,所有传入HDFS的文件都被分割成块。根据配置的块大小和复制因子,每个块在集群中被复制指定的次数。该信息被传递给NameNode,它跟踪集群中的所有内容。NameNode将这些文件分配给多个数据节点,然后将这些文件写入其中。在2012年被实施的高可用性允许NameNode故障转移到备份节点上,以跟踪集群中的所有文件。

MapReduce算法位于HDFS之上,由JobTracker组成。一旦应用程序以其中一种语言编写,Hadoop接受JobTracker,然后分配工作(可包括计算单词和清理日志文件等内容,以及在Hive仓库数据集之上运行HiveQL查询)到侦听其他节点的TaskTracker。

hadoop_cal

YARN分配JobTracker加速并监控它们的资源,以提高效率。然后将所有来自MapReduce阶段的结果汇总并写入HDFS中的磁盘之上。

Spark

spark_arch

Spark的计算过程在内存中执行并在内存中存储,直到用户保存为止。除此之外,Spark处理工作的方式基本与Hadoop类似。最初,Spark从HDFS,S3或其他文件存储系统读取到名为SparkContext的程序执行入口。除此之外,Spark创建了一个名为RDD(弹性分布式数据集)的结构,它表示一组可并行操作元素的不可变集合。

随着RDD和相关操作的创建,Spark还创建了一个DAG(有向无环图),以便可视化DAG中的操作顺序和操作之间的关系。每个DAG都有确定的阶段和步骤。

用户可以在RDD上执行转换,中间操作或最终步骤。给定转换的结果进入DAG,不会保留到磁盘,但每一步操作都会将内存中的所有数据保留到磁盘。

Spark RDD顶部的一个新抽象是DataFrames,它是在Spark 2.0中作为RDD配套接口开发的。这两者非常相似,但DataFrames将数据组织成命名列,类似于Python的pandas或R包。这使得它们比RDD更方便,RDD没有类似的一系列列级标题引用。SparkSQL还允许用户像存储关系数据的SQL表一样查询DataFrame。

性能

Spark在内存中运行速度比Hadoop快100倍,在磁盘上运行速度快10倍。众所周知,Spark在数量只有十分之一的机器上,对100TB数据进行排序的速度比Hadoop MapReduce快3倍。此外,Spark在机器学习应用中的速度同样更快,例如Naive Bayes和k-means。

由处理速度衡量的Spark性能之所以比Hadoop更优,原因如下:

  1. 每次运行MapReduce任务时,Spark都不会受到输入输出的限制。事实证明,应用程序的速度要快得多。

  2. park的DAG可以在各个步骤之间进行优化。Hadoop在MapReduce步骤之间没有任何周期性连接,这意味着在该级别不会发生性能调整。

但是,如果Spark与其他共享服务在YARN上运行,则性能可能会降低并导致RAM开销内存泄漏。出于这个原因,如果用户有批处理的诉求,Hadoop被认为是更高效的系统。

成本

Spark和Hadoop都可以作为开源Apache项目免费获得,这意味着用户都可以零成本安装运行。但是,考虑总体拥有成本才是最重要的,比如维护、硬件和软件购买,雇佣集群管理团队的开销。内部安装的一般经验法则是Hadoop需要更多的磁盘内存,而Spark需要更多的RAM,这意味着设置Spark集群可能会更加昂贵。此外,由于Spark是较新的系统,因此它的专家更为稀少,成本更高。

容错和安全性

Hadoop具有高度容错性,因为它旨在跨多个节点复制数据。每个文件都被分割成块,并在许多机器上复制无数次,以确保如果单台机器停机,可以从其他块重建文件。

Spark的容错主要是通过RDD操作来实现。最初,静态数据存储在HDFS中,通过Hadoop的体系结构进行容错。随着RDD的建立,它记住了数据集是如何构建的,由于它是不可变的,如果需要可以从头开始重建。跨Spark分区的数据也可以基于DAG跨数据节点重建。数据在执行器节点之间复制,如果执行器和驱动程序之间的节点通信失败,通常可能会损坏数据。

Spark和Hadoop都可以支持Kerberos身份验证,但Hadoop对HDFS具有更加细化的安全控制。Apache Sentry是一个用于执行细粒度元数据访问的系统,是另一个专门用于HDFS级别安全性的项目。
Spark的安全模型目前很少,但允许通过共享密钥进行身份验证。

机器学习

Hadoop使用Mahout来处理数据。Mahout包括集群,分类和基于批处理的协作过滤,所有这些都在MapReduce之上运行。目前正在逐步推出支持Scala和DSL语言的Samsara(类似R的矢量数学环境),允许用户进行内存和代数操作,并允许用户自己编写算法。

Spark有一个机器学习库叫MLLib,充分利用了Spark快速内存计算,迭代效率高的优势开发机器学习应用程序。它可用于Java,Scala,Python或R,包括分类和回归,以及通过超参数调整构建机器学习管道的能力。

总结

所以,到底是选Hadoop还是Spark呢?两者都是Apache的顶级项目,经常一起使用,并且有相似之处,但Spark并不是离不开Hadoop,目前已有超过20%的Spark独立于Hadoop运行,并且这一比例还在增加。从性能、成本、高可用性、易用性、安全性和机器学习诸多方面参考,Spark都略胜一筹!